skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Golinko, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Convolutional neural networks (CNN) have become very popular for computer vision, text, and sequence tasks. CNNs have the advantage of being able to learn local patterns through convolution filters. However, generic datasets do not have meaningful local data correlations, because their features are assumed to be independent of each other. In this paper, we propose an approach to reorder features of a generic dataset to create feature correlations for CNN to learn feature representation, and use learned features as inputs to help improve traditional machine learning classifiers. Our experiments on benchmark data exhibit increased performance and illustrate the benefits of using CNNs for generic datasets. 
    more » « less